You've got array A, consisting of n integers and a positive integer k. Array A is indexed by integers from 1 to n.
You need to permute the array elements so that value
The first line contains two integers n, k (2 ≤ n ≤ 3·105, 1 ≤ k ≤ min(5000, n - 1)).
The second line contains n integers A[1], A[2], ..., A[n] ( - 109 ≤ A[i] ≤ 109), separate by spaces — elements of the array A.
Print the minimum possible value of the sum described in the statement.
3 21 2 4
1
5 23 -5 3 -5 3
0
6 34 3 4 3 2 5
3
In the first test one of the optimal permutations is 1 4 2.
In the second test the initial order is optimal.
In the third test one of the optimal permutations is 2 3 4 4 3 5.
解题思路:
将数组分成k组,各自是i,i+k,i+2*k,i+3*k...(1<=i<=k),有x=n%k个组元素个数是n/k+1个,问题就转化为k组内
相邻元素差值的和的最小值,这时就须要对数组进行排序。仅仅有每组内的元素都是有序的,每组内的相邻元素的
差值才会最小,接着就是在k组内分x组长度为n/k+1,这时就须要dp,dp[i][j]。i是分了i组。j组长度是n/k+1;dp方
程为dp[i][j]=max(dp[i-1][j]+dp[i-1][j-1])+(a[i*n/k+j+1]-a[i*n/k+j]),ans=a[n]-a[1]-dp[k][x],a[i*n/k+j+1]-a[i*n/k+j]是要
从分第i组是,第i组的第1个元素与第i-1组的最后一个元素的差值。
代码:
#include#include #include #include using namespace std;const int maxn=500000+100;int a[maxn];int s[maxn];int bbs(int x){ if(x<0) return -x; return x;}int dp[5500][5500];int main(){ int n,k; scanf("%d%d",&n,&k); for(int i=1;i<=n;i++) scanf("%d",&a[i]); sort(a+1,a+n+1); memset(dp,-1,sizeof(dp)); int sum=a[n]-a[1]; int q=n/k; int x=n%k; dp[0][0]=0; for(int i=1;i<=k;i++) { for(int j=0;j<=x;j++) { int df; if(j==0) df=dp[i-1][j]; else df=max(dp[i-1][j],dp[i-1][j-1]); if(df<0) continue; if(i==k&&j==x) dp[i][j]=df; else dp[i][j]=df+a[i*q+j+1]-a[i*q+j]; } } int ans=sum-dp[k][x]; cout< <